Buenas Prácticas Agrícolas y Optimización de equipos y técnicas de aplicación de fitosanitarios en atomizadores

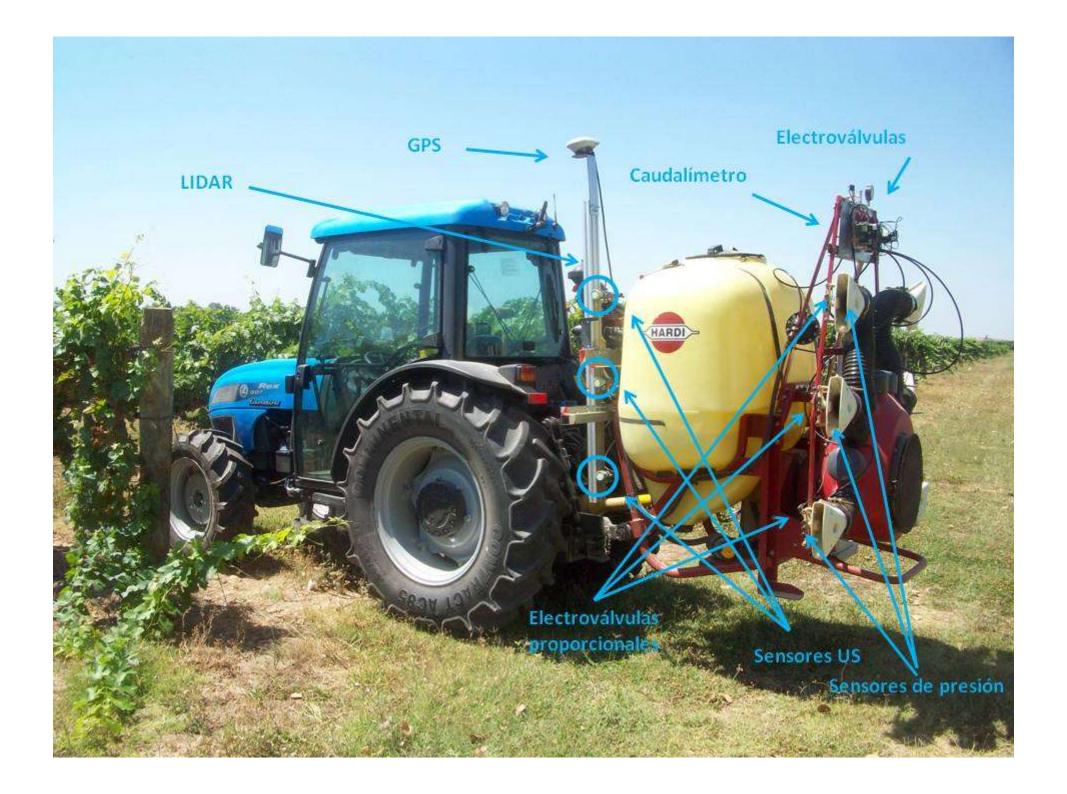
Unidad de Mecanización Agraria Departament d'Enginyeria Agroalimentària i Biotecnlogia Universitat Politècnica de Catalunya

Boquillas y gotas

Regulación de equipos de aplicación

Factores claves para una buena aplicación

- 1) Producto fitosanitario
- 2) Equipo
- 3) Condiciones ambientales



DIRECTIVA 2009/128/CE DEL PARLAMENTO EUROPEO Y DEL CONSEJO

de 21 de octubre de 2009

por la que se establece el marco de la actuación comunitaria para conseguir un uso sostenible de los plaguicidas

GOBIERNO DE MINISTERIO DE ESPAÑA Y MEDIO RURAL Y MARINO

RD que establece el marco de actuación para conseguir un uso Sostenible de Plaguicidas - RD 1311/2012

RD para la inspección de equipos de aplicación de fitosanitarios en uso - RD 1702/2011

Plan Acción Nacional

Cuaderno de explotación

Toda explotación o usuario profesional de productos fitosanitarios llevará de forma actualizada un cuaderno de campo

Carnet de aplicador

A partir del 26 de noviembre de 2015 Deberán estar en posesión del carnet aquellas personas que: 1) compren productos, 2) realicen cualquier tipo de manipulación de productos (transporte, almacenamiento, etc.), 3) realicen tratamientos

Fuente: MAGRAMA. Campaña de divulgación del uso sostenible de productos fitosanitarios

Gestión Integrada de Plagas

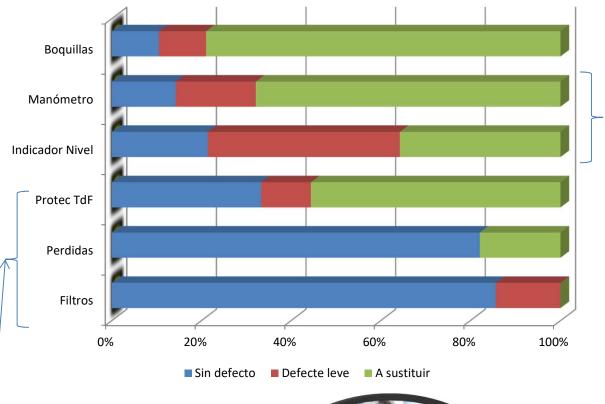
Fuente: MAGRAMA. Campaña de divulgación del uso sostenible de productos fitosanitarios

Fuente: MAGRAMA. Campaña de divulgación del uso sostenible de productos fitosanitarios

Periodicidad las inspecciones

- Todos los equipos deberán estar inspeccionados, al menos una vez antes del 26 de noviembre de 2016
- Todos los equipos nuevos, adquiridos después de la entrada en vigor RD de inspecciones (10 de diciembre de 2011), se han de inspeccionar, al menos una vez, dentro del plazo de los 5 primeros años.
- Después del año 2020, inspecciones cada 3 años en todos los EAPF (Equipos de Aplicación de Productos Fitosanitarios)

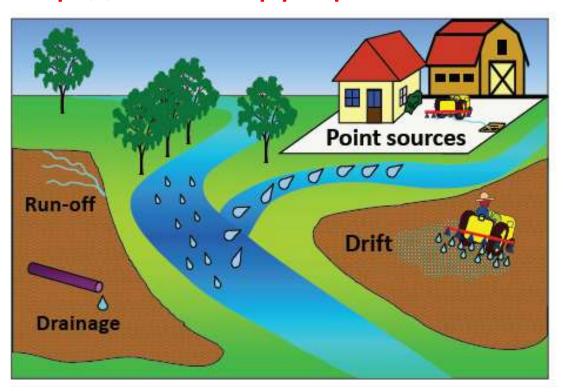
¿Que se revisa en una inspección?



Elemento	Inspección visual	Medidas
Sistemas de protección	✓	
Bomba	✓	
Sistema de agitación	✓	
Tanque	✓	
Sistema de regulación	✓	✓
Tuberías	✓	
Filtros	✓	
Boquillas	✓	✓

Afectan a la calidad de la aplicación

Es evidente cuando no funcionan



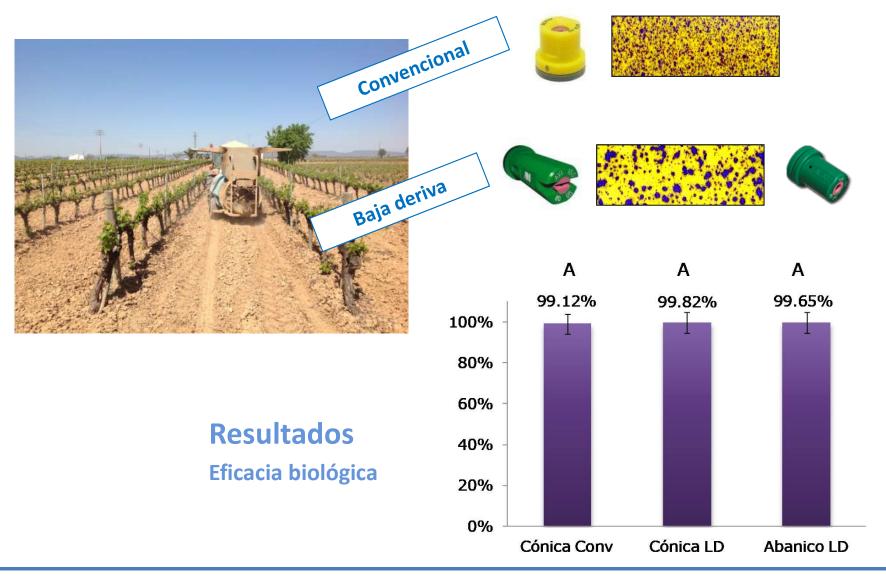
Dos principales rutas de entrada de PPP al agua: puntual + difusa

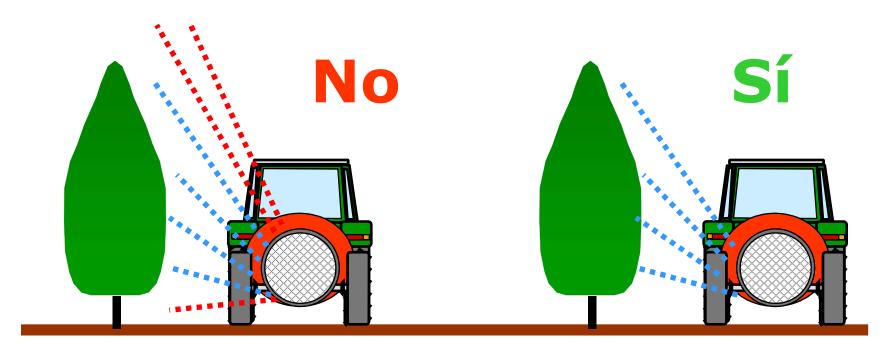
http://www.topps-prowadis.es

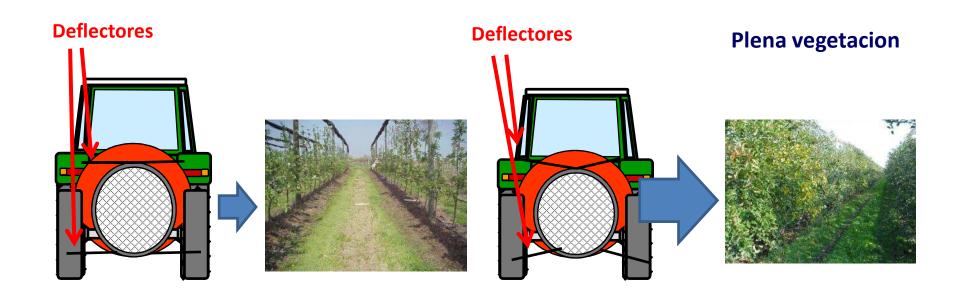
5 % Drift 30 % Run-off

La contaminación difusa se puede reducir

> 50 % Point source La contaminación puntual se puede evitar

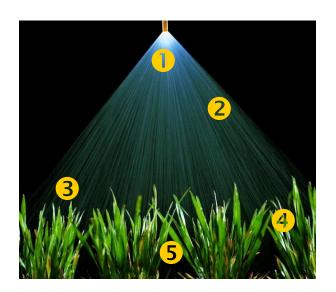



Utilizar boquillas de baja deriva



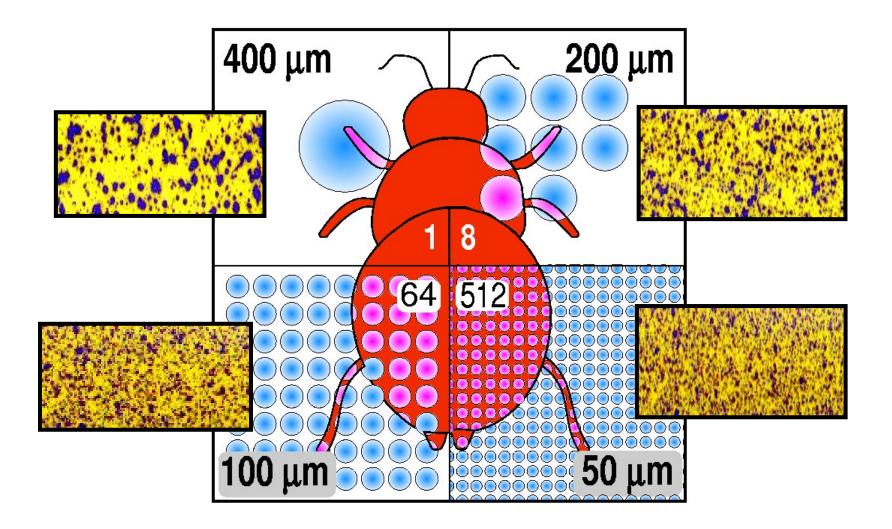
Ajustar la dirección y el caudal de líquido en función de las condiciones particulares

Ajustar la dirección y el caudal de aire en función de las condiciones particulares

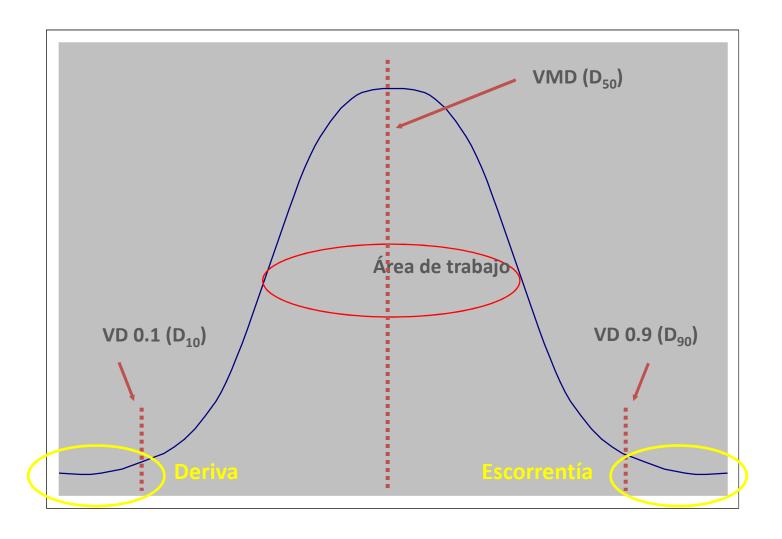


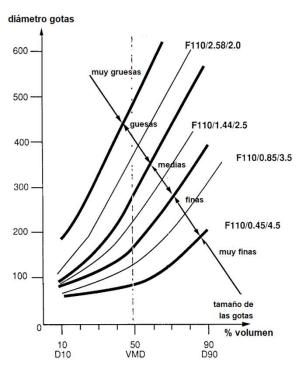
Boquillas y gotas

Regulación de equipos de aplicación


Funciones de la boquilla

- 1. Control del caudal de líquido
- 2. Formación de las gotas
- 3. Distribución sobre el objetivo
- 4. Recubrimiento
- 5. Penetración





Importancia del espectro de gotas

Clasificación del tamaño de gotas

Category	ВСРС	ASABE S572
Muy fina(VF)	< 90 μm	< 100 μm
Fina (F)	90 – 200 µm	100 – 175 μm
Media (M)	200 – 300 μm	175 – 250 μm
Gruesa (C)	300 – 450 μm	250 – 375 μm
Muy gruesa (VC)	> 450 µm	375 – 450 μm
Extra gruesa (XC)		> 450 μm

COMPARATIVA DEL TAMAÑO DE GOTAS: BOQUILLAS MODELO 03

Fuente: Catalogo Albuz 2013

	AXI 110°										
bar	VERDE 110015	AMARILLA 11002	LILA 110025	AZUL 11003	ROJA 11004	MARRON 11005	GRIS 11006				
1,5	F	F	М	M	М	М	С				
2	F	F	F	M	М	М	M				
3	F	F	F	М	М	М	M				
4	VF	F	F	F	М	М	М				

AA)	bar									
9	1	1.5	2	2.5	3	3.5	4			
XR11001	F	F	F	F	F	VF	VF			
XR110015	F	F	F	F	F	F	F			
XR11002	М	F	F	F	F	F	F			
XR110025	М	М	F	F	F	F	F			
XR11003	М	М	F	F	F	F	F			
XR11004	М	М	М	М	М	F	F			
XR11005	C	М	М	М	М	М	М			
XR11006	C	C	М	М	М	М	М			
XR11008	C	C	C	C	М	М	М			
XRC11010	VC	C	C	C	C	C	М			
XRC11015	XC	VC	VC	VC	C	C	C			
XRC11020	XC	XC	XC	VC	VC	VC	VC			

Equipment for crop protection — Sprayer nozzles — Colour coding for identification

ISO/FDIS 10625

Matériel de protection des cultures — Buses de pulvérisation — Code de couleur pour l'identification

Caudal (Color	Código	Tipo
l/min	GPM			
0.4	0.1	Naranja	01	F, LD
0.6	0.15	Verde	015	F, LD, AI
0.8	0.2	Amarillo	02	F, LD, AI
1.0	0.25	Rosa	025	Al
1.2	0.3	Azul	03	F, LD, AI
1.6	0.4	Rojo	04	F, LD, AI
2.0	0.5	Marrón	05	F
2.4	0.6	Gris	06	F
3.2	0.8	Blanco	08	F

	bar	DROP SIZE	CAPACITY ONE NOZZLE IN I/min
	1.0	XC	0.34
#**********	2.0	VC	0.48
AIXR110015	3.0	C	0.59
(100)	4.0	C	0.68
30 B	5.0	M	0.76
	6.0	M	0.83
	1.0	XC	0.46
	2.0	VC	0.65
AIXR11002	3.0	C	0.79
(50)	4.0	C	0.91
	5.0	C	1.02
	6.0	M	1.12
	1.0	XC	0.57
	2.0	XC	0.81
AIXR110025	3.0	VC	0.99
(50)	4.0	C	1.14
(Monthee)	5.0	C	1.28
: .	6.0	C	1.40
	1.0	XC	0.68
	2.0	XC	0.96
AIXR11003	3.0	VC	1.18
(50)	4.0	C	1.36
re-name.	5.0	C	1.52
	6.0	C	1.67
	1.0	UC	0.91
	2.0	XC	1.29
AIXR11004	3.0	VC	1.58
(50)	4.0	VC	1.82
10000	5.0	C	2.04
	6.0	C	2.23

		(S)	DROP SIZE	CAPACITY ONE NOZZLE
	U	Dui.	110°	IN I/min
		2.0	UC	0.48
		3.0	XC	0.59
	Al80015	4.0	XC	0.68
	AI110015	5.0	VC	0.76
	(100)	6.0	VC	0.83
	71001	7.0	C	0.90
		8.0	C	0.96
		2.0	UC	0.65
	*10000	3.0	XC	0.79
	AI8002	4.0	XC	0.91
	AI11002	5.0	VC	1.02
	(50)	6.0	VC	1.12
	100000	7.0	C	1.21
	V 1	8.0	C	1.29
		2.0	UC	0.81
	A10003F	3.0	XC	0.99
	Al80025	4.0	XC	1.14
	Al110025	5.0	VC	1.28
	(50)	6.0	VC	1.40
	1861 14	7.0	C	1.51
		8.0	C	1.62
		2.0	UC	0.96
	AI8003	3.0	XC	1.18
		4.0	XC	1.36
	AI11003	5.0	VC	1.52
	(50)	6.0	VC	1.67
	3000	7.0	C	1.80
		8.0	C	1.93
		2.0	UC	1.29
	A18004	3.0	XC	1.58
		4.0	XC	1.82
	AI11004	5.0	VC	2.04
	(50)	6.0	VC	2.23
		7.0	C	2.41
		8.0	C	2.58

AG (II)	0		OP ZE	CAPACITY ONE NOZZLE		
	bar	80°	110°	IN I/min		
	1.0	M	F	0.23		
XR8001	1.5	F	F	0.28		
XR11001	2.0	E	F	0.32		
(Second Property)	2.5	F	F	0.36		
(100)	3.0	F	F	0.39		
	4.0	F	VF	0.45		
Contract Contracts	1.0	M	F	0.34		
XR80015	1.5	M	F	0.42		
XR110015	2.0	F	F	0.48		
100000	2.5	F	F	0.54		
(100)	3.0	F	F	0.59		
	4.0	F	F	0.68		
VDOOOD	1.0	M	M	0.46		
XR8002	1.5	M	F	0.56		
XR11002	2.0	M	F	0.65		
(20)	2.5	M	F	0.72		
(50)	3.0	F	F	0.79		
	1.0	P		0.91		
			M	0.57		
XR110025	1.5		M	0.70		
	2.5		F	0.90		
(50)	3.0		F	0.99		
	4.0		F	1.14		
	1.0	М	M	0.68		
XR8003	1.5	M	M	0.83		
	2.0	M	F	0.96		
XR11003	2.5	M	F	1.08		
(50)	3.0	M	F	1.18		
(30)	4.0	M	F	1.36		
	1.0	C	М	0.91		
XR8004	1.5	M	M	1.12		
VD11004	2.0	M	M	1.29		
XR11004	2.5	M	M	1.44		
(50)	3.0	M	M	1.58		
10.00 M	4.0	M	F	1.82		

bar	I/mn										
	MORADA 80-0050	ROSA 80-0075	NARANJA 80-01	VERDE 80-015	AMARILLA 80-02	LILA 80-025	AZUL 80-03	ROJA 80-04			
5		0,39	0,52	0,77	1,03	1,29	1,55	2,07			
6	. 51	0,42	0,57	0,85	1,13	1,41	1,70	2,26			
7	0,31	0,46	0,61	0,92	1,22	1,53	1,83	2,44			

Nozzle flow rate and color code ISO according ISO 10625

					Flow	rate I/n	nin at n	ozzle siz	ze ISO				3
Pressure bar	-01	-015	-02	-025	-03	-04	:05	-06	-08	-10	-12	-16	-20
1.0	0.23	0.35	0.46	0.58	0.69	0.92	1.15	1.39	1.85	2.31	2.77	3.70	4.62
1.5	0.28	0.42	0.57	0.71	0.85	1.13	1.41	1.70	2.26	2.83	3.39	4.53	5.66
2.0	0.33	0.49	0.65	0.82	0.98	1.31	1.63	1.96	2.61	3.27	3.92	5.23	6.53
2.5	0.37	0.55	0.73	0.91	1.10	1.46	1.83	2.19	2.92	3.65	4.38	5.84	7.30
3.0	0.40	0.60	0.80	1.00	1.20	1.60	2.00	2.40	3.20	4.00	4.80	6.40	8.00
4.0	0.46	0.69	0.92	1.15	1.39	1.85	2.31	2.77	3.70	4.62	5.54	7.39	9.24
5.0	0.52	0.77	1.03	1.29	1.55	2.07	2.58	3.10	4.13	5.16	6.20	8.26	10.33
6.0	0.57	0.85	1.13	1.41	1.70	2.26	2.83	3.39	4.53	5.66	6.79	9.05	11.31
7.0	0.61	0.92	1.22	1.53	1.83	2.44	3.06	3.67	4.89	6.11	7.33	9.78	12.22
8.0	0.65	0.98	1.31	1.63	1.96	2.61	3.27	3.92	5.23	6.53	7.84	10.45	13.06
9.0	0.69	1.04	1.39	1.73	2.08	2.77	3.47	4.16	5.54	6.93	8.31	11.09	13.86
10.0	0.73	1.10	1.46	1.83	2.19	2.92	3.65	4.38	5.84	7.30	8.76	11.68	14.61
12.0	0.80	1.20	1.60	2.00	2.40	3.20	4.00	4.80	6.40	8.00	9.60	12.80	16.00
14.0	0.86	1.29	1.73	2.16	2.59	3.46	4.32	5.19	6.91	8.64	10.37	13.83	17.28
16.0	0.92	1.39	1.85	2.31	2.77	3.70	4.62	5.54	7.39	9.24	11.09	14.78	18.48
18.0	0.98	1.47	1.96	2.45	2.94	3.92	4.90	5.88	7.84	9.80	11,76	15.68	19.60
20.0	1.03	1.55	2.07	2.58	3.10	4.13	5.16	6.20	8.26	10.33	12.39	16.52	20.66
25.0	1.15	1.73	2.31	2.89	3.47	4.62	5.77	6.93	9.24	11.55	13.86	18.48	23.09

Baja deriva?

Abanico?

Angulo?

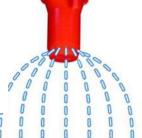
Conicas?

La elección de la boquilla depende de ...

- 1. El caudal necesario
- 2. La presión de trabajo
- 3. La distribución
- 4. El ángulo de pulverización
- 5. El líquido a pulverizar
- 6. La calidad de la atomización
- 7. El material de la boquilla

Abanico o chorro plano

Deflectoras o de espejo

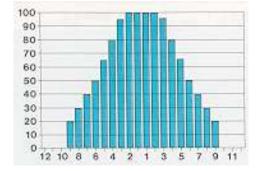


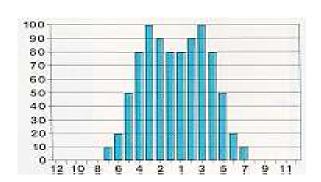
Especiales

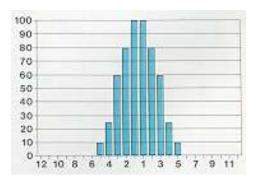
Abanico

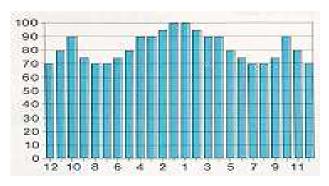
Cónica

Cono lleno



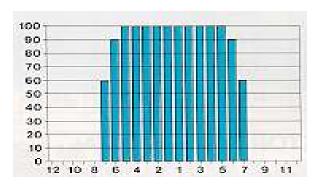




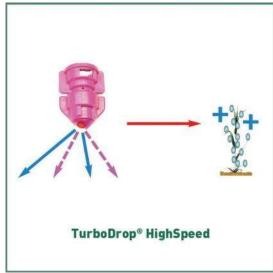


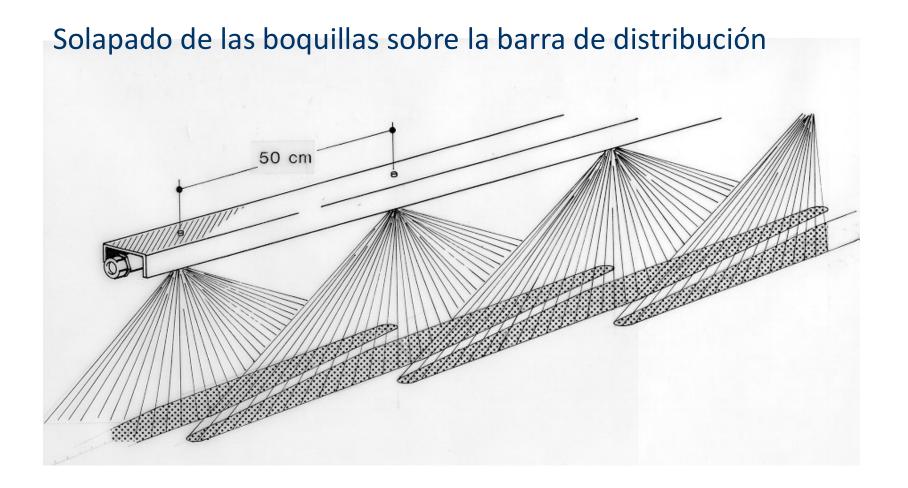
Espejo

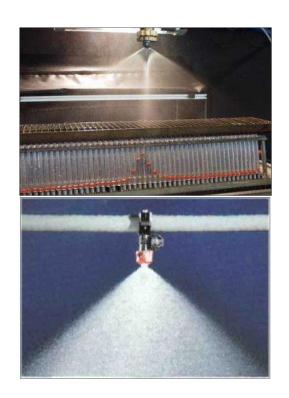
4598



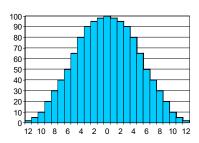
Abanico uniforme

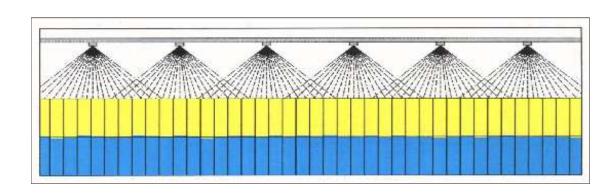




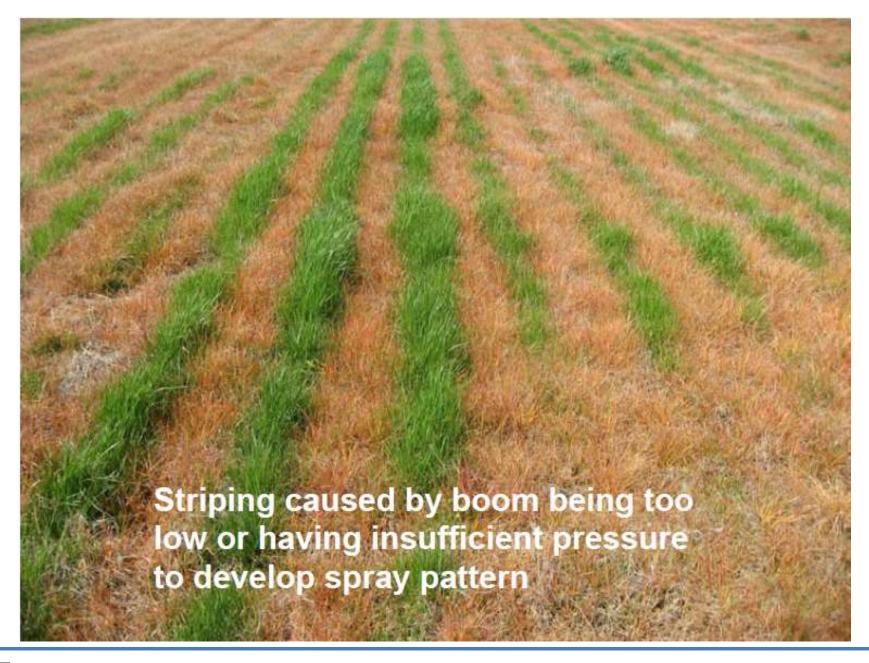


Características Boquillas de Abanico

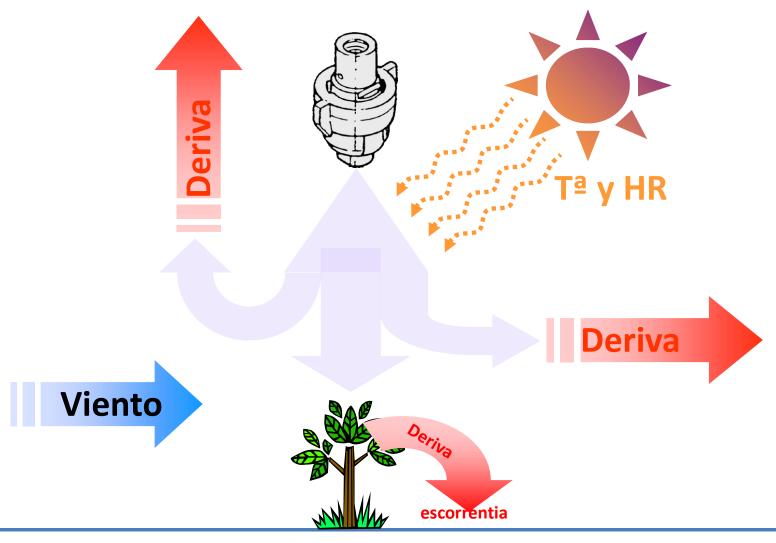

Uniformidad de distribución – factor clave



Las boquillas de abanico presentan una distribución triangular de dimensiones variables en función del ángulo de pulverización

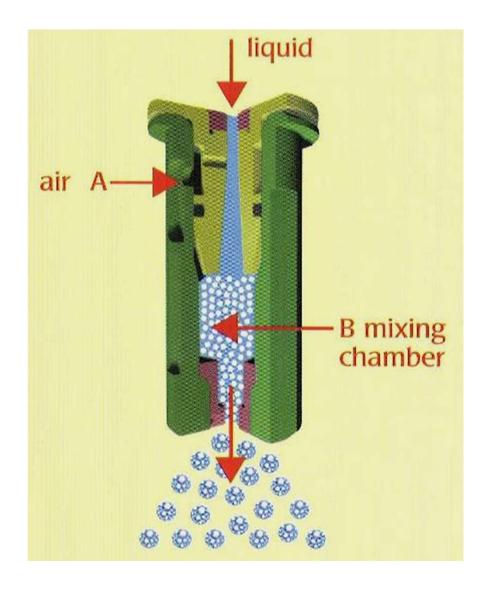

La altura de la barra es un factor clave para la consecución de una distribución uniforme en toda la superficie a tratar

Los sistemas de estabilidad de la barra permiten amortiguar errores de distribución debidos al mal estado de las parcelas



Deriva

Parte de la pulverización que no alcanza el objetivo



Boquillas antideriva

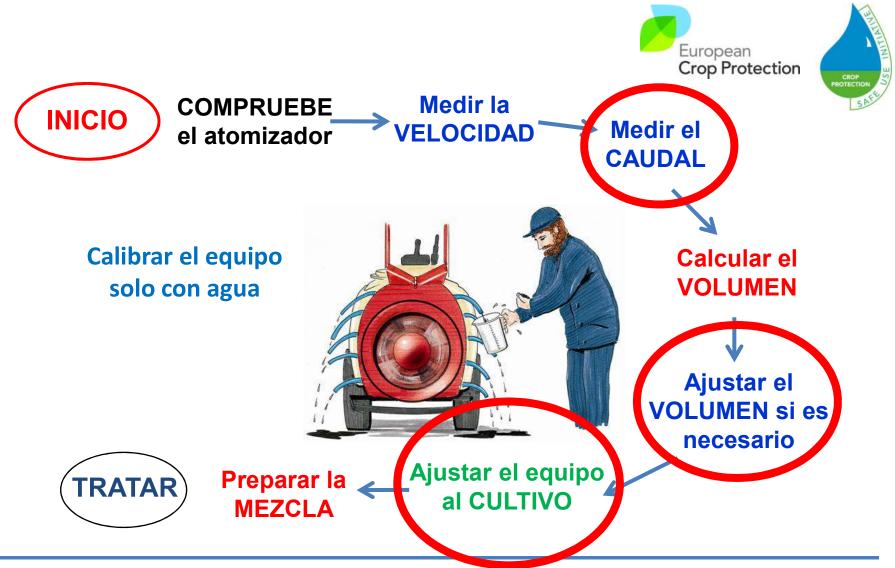
Existen 2 tipologías:

- Inyección de aire
- Con precámara

Buenas prácticas agrícolas

Boquillas y gotas

Regulación de equipos de aplicación


Regulación: la clave del éxito

Invertir 15 minutos en ajustar el equipo para un uso óptimo en función de las condiciones del momento

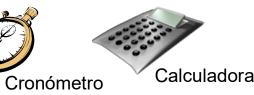
Calibración de pulverizadores

Material para la calibración

Comprobar el caudal

Hay dos métodos para determinar el caudal de las boquillas:

- Método preciso: medir el caudal de cada una de las boquillas durante 1 minuto.
- Método aproximado: medir el volumen gastado del tanque en 5 minutos.



Medir el caudal de cada boquilla durante 1 minuto

boquillas)

Boquilla	IZQ	DER		
1 abajo				
2				

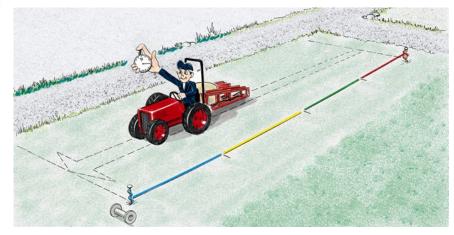
Libreta

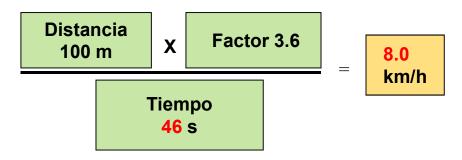
La variación del caudal entre las boquillas debe ser < +/- 10% del caudal medio

Las boquillas con un caudal > +/- 10% se deben limpiar o cambiar y comprobar de nuevo

- 1) Ajustar las revoluciones del motor
- 2) Empezar la pulverización
- 3) Recoger el agua de cada boquilla durante un minuto
- 4) Anotar el caudal de cada boquilla
- 5) Calcular el caudal medio por boquilla (L/min)

0				
9				
10				
Total I				
Total II	L/ min	L/ min totales		
L/min	L/ min por boquilla			

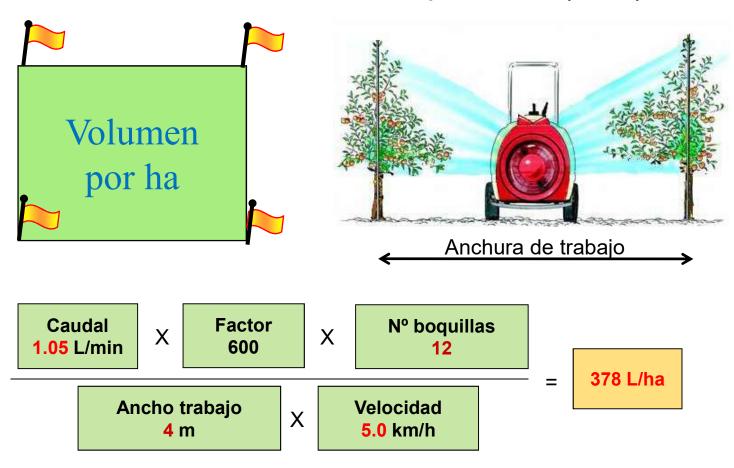

Comprobar la velocidad



Jalones Calculadora

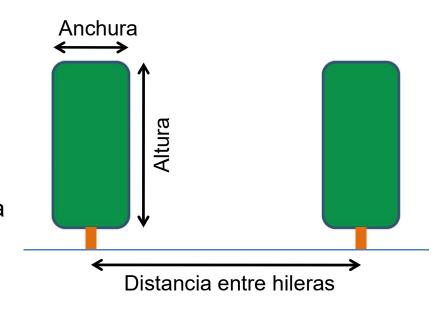
1) Marcar una distancia ej. 100 m

- 2) Llenar el depósito hasta el 50%
- 3) Elegir la velocidad (marcha, TDF a 540 rpm) adecuada para el tratamiento
- 4) Mantener la velocidad constante y anotar el tiempo necesario para recorrer los 100 m
- 5) Medir el tiempo: _____ s. (ejemplo: 45 s)
- 6) Calcular la velocidad



Calcular el volumen de aplicación (L/ha)

Recomendación de volumen de aplicación (L/ha)


Si el volumen de aplicación calculado está dentro del rango recomendado, continuar con "Ajustes del equipo al cultivo"

Volúmenes recomendados

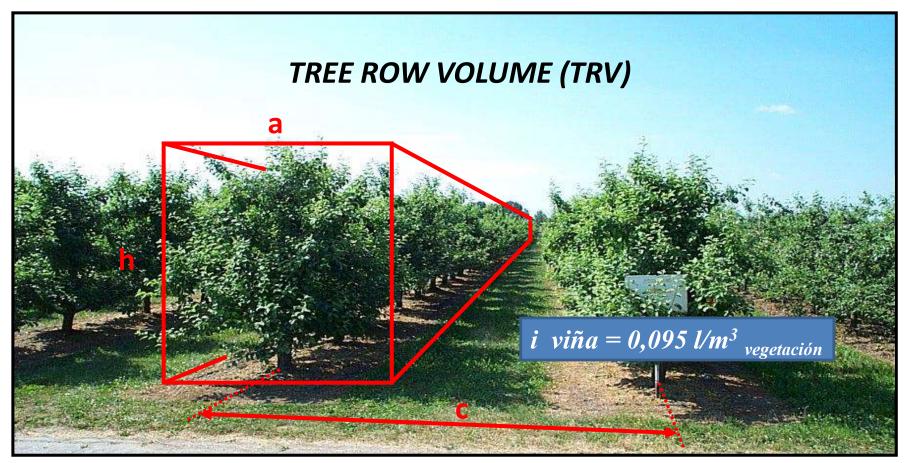
Leer las recomendaciones de la etiqueta del producto fitosanitario

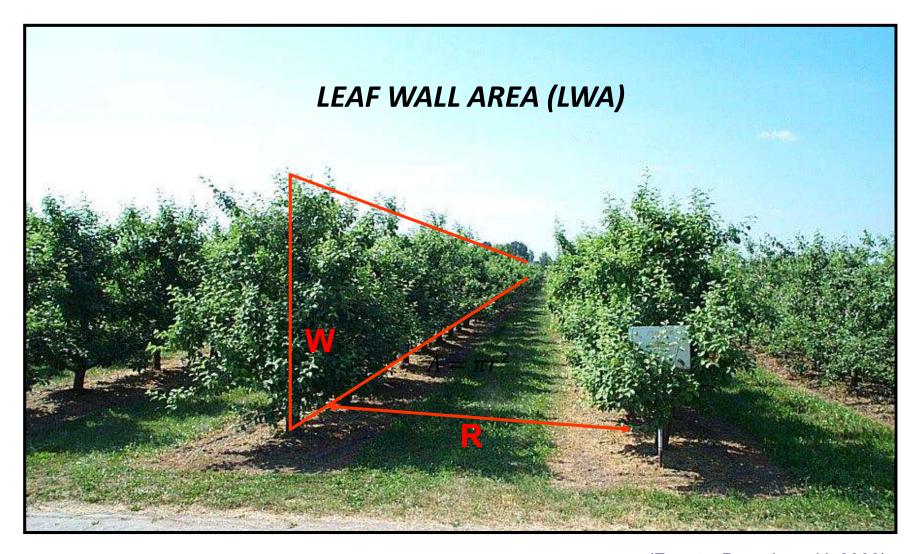
Evitar escorrentía y goteo

Existen modelos que tienen en cuenta la distancia entre hileras, la altura y la anchura de la vegetación (TRV y LWA)

Condicionantes: características del cultivo

Estimar cuanto volumen de vegetación se va a tratar: TRV, LWA

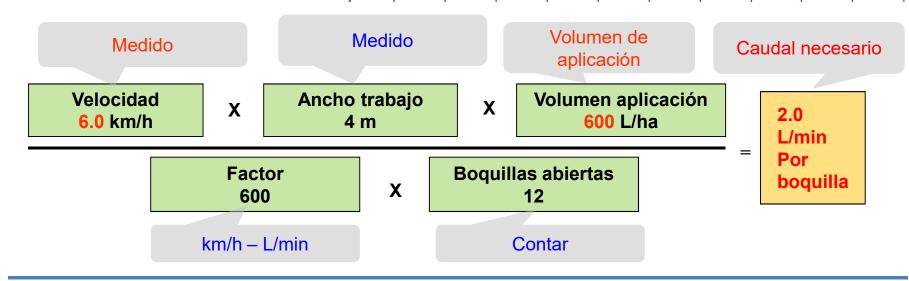




(Fuente: Doruchowski, 2003)

$$TRV\left(m^{3}_{veg}\ ha^{-1}\right) = \frac{h \times a \times 10.000}{c}$$
 $DOSIFICACION\left(l\ ha^{-1}\right) = TRV \times i\left(l\ m^{3}_{veg}\right)$

$$LWA \ (m^2_{vegetación}/ha = \frac{W * 10000}{R} * 2 \qquad VOLUMEN \ (l \ ha^{-1}) = LWA \times i \ (l \ m^2_{veg})$$



Cambiar el tamaño de las boquillas (ajuste grande)

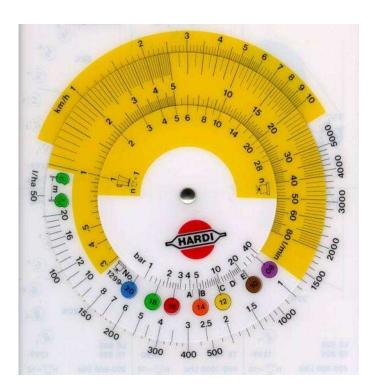
- Calcular el caudal necesario por boquilla para la velocidad de avance y el volumen de aplicación deseado
- 2) Seleccionar la boquilla necesaria /color ej. GRIS para 2.0 L/min.

D	1/mn									
Bar	WHITE	LILAC	BROWN	YELLOW	ORANGE	RED	GREY	GREEN	BLACK	BLUE
5	0.27	0.36	0.48	0.73	0.99	1.38	1.50	1.78	7.0	2.45
6	0.29	0.39	0.52	0.80	1.08	1.51	1.63	1.94	2.18	2.67
7	0.32	0.42	0.56	0.86	1.17	1.62	1.76	2.0	2.35	2.87
8	0.34	0.45	0.60	0.92	1.24	1.73	1.87	2.22	2.50	3.06
9	0.36	0.48	0.64	0.97	1.32	1.83	1.98	2.35	2.64	3,24
10	0.38	0.50	0.67	1.03	1.39	1.92	2.08	2.47	2.78	3.40

Herramientas calibración para smartphones y tablets

TankCalc

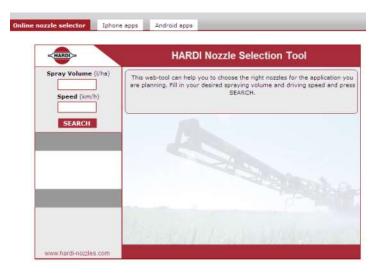
Arag ASJ Nozzles



Herramientas de calibración

Explicación

Explicación


www.uma.deab.upc.edu

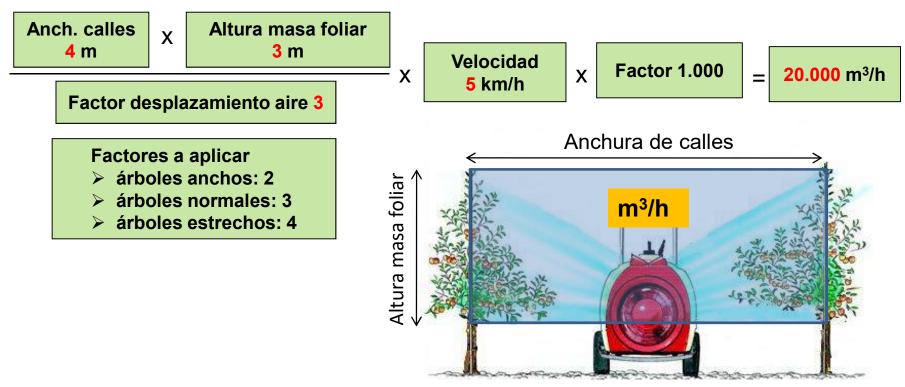
www.hardi-international.com

Ajuste del caudal de aire a la vegetación

El caudal de aire (m³/h) y la velocidad de avance se deben adaptar a las características de la vegetación asegurando que la pulverización llegue solo a la zona objetivo

Demasiado aire: poca deposición en la vegetación, deriva

Muy poco aire: dificultades para la penetración al interior de la vegetación



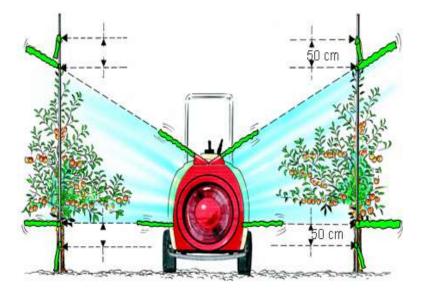
Cálculo del caudal de aire del ventilador

Aire necesario (m³/h) para llenar la hilera pulverizada (ver esquema)

Ejemplo

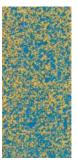
Ajuste del caudal de aire a la vegetación

- 1) Preparar dos mástiles al menos 50 cm más altos que los árboles
- 2) Colocar los mástiles en la hilera y atar 4 trozos de cinta en cuatro niveles:
 - a) 50 cm sobre el cultivo
 - b) En lo alto del cultivo
 - c) En la parte de abajo
 - d) 50 cm bajo la vegetación
- 3) Colocar cuatro trozos de cinta en las partes altas y bajas del ventilador
- 4) Ajustar los deflectores (si los hay) para adecuar la corriente de aire a la vegetación


Flexómetro

Cinta

Jalones



Prueba en campo de la distribución y penetración

Papel hidrosensible y grapadora

Grapar papeles hidrosensibles en unos mástiles de madera colocados en la vegetación El papel hidrosensible se puede grapar también en las hojas

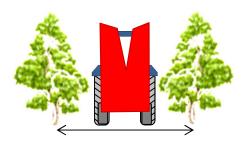
Orientar las boquillas ajustándolas a las partes altas y bajas de la vegetación

Calcular la cantidad de producto fitosanitario a añadir al depósito del pulverizador

1. Cultivo y condiciones ambientales

Temperatura: 10 − 25 °C

Humedad: 50 – 75% Velociidad del viento: < 3 m/s (≈ 10,8 km/h)


2. Volumen de aplicación (I/ha)

3. Anchura de trabajo (m)

4. Velocidad de trabajo (km/h)

Velocidad (km/h) =
$$\frac{\text{Distancia (m)}}{\text{Tiempo (s)}}$$

En frutales y viña: Distancia entre hileras

5. Selección de boquillas y presión

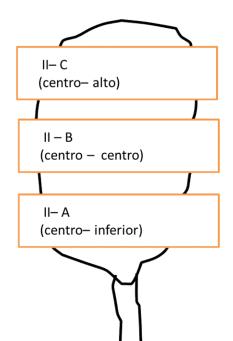
Caudal total (I/min) =
$$\frac{D (I/ha) \times V (km/h) \times A (m)}{600} = \frac{Caudal total}{N^{\circ} boquillas} = \frac{Caudal}{Unitario}$$

		Caudal (I/min)									
	Presión (bar)	Morado 0050	Rosa 0075	Naranja 01	Verde 015	Amarillo 02	Lila 025	Azul 03	Rojo 04	Marrón 05	
	1	-	-	0,23	0,35	0,46	0,58	0,69	0,92	1,15	
	1,5	-	•	0,28	0,42	0,57	0,71	0,85	1,13	1,41	
	2	-	•	0,33	0,49	0,65	0,82	0,98	1,31	1,63	
	2,5	-	1	0,37	0,55	0,73	0,91	1,10	1,46	1,83	
	3	-	-	0,40	0,60	0,80	1,00	1,20	1,60	2,00	
	4	-	ı	0,46	0,69	0,92	1,15	1,39	1,85	2,31	
	5	-	0,39	0,52	0,77	1,03	1,29	1,55	2,07	2,58	
	6	-	0,42	0,57	0,85	1,13	1,41	1,70	2,26	2,83	
	7	0,31	0,46	0,61	0,92	1,22	1,53	1,83	2,44	3,06	
	8	0,33	0,49	0,65	0,98	1,31	1,63	1,96	2,61	3,27	
	٥	0.35	0.52	0.60	1.04	1 30	1 73	2.08	2 77	3.47	

Volumen aplicación:

Tipo boquillas:

Presión de trabajo:


Anchura de trabajo:

Velocidad:

I – C (izquierda – alto)

I – B (izquierda – centro)

I – A (izquierda – inferior)

Ejemplo de plantilla para colocar papeles hidrosensibles

Grupo:____

III - C (derecha – alto)

III - B (derecha- centro)

III - A(derecha- inferior)

